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We develop practical operations research models to support decision making in the design and management of public
bicycle-sharing systems. We develop a network flow model with proportionality constraints to estimate the flow of bicycles
within the network and the number of trips supported, given an initial allocation of bicycles at each station. We also
examine the effectiveness of periodic redistribution of bicycles in the network to support greater flow, and the impact on
the number of docks needed.

We conduct our numerical analysis using transit data from train operators in Singapore. Given that a substantial pro-
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system to be most effective for this customer segment, the system must deploy the right number of bicycles at the right
places, because this affects the utilization rate of the bicycles and how bicycles circulate within the system. We also identify
the appropriate operational environments in which periodic redistribution of bicycles will be most effective for improving
system performance.
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1. Introduction
With heightened concerns about global oil prices, car-
bon emissions, and traffic congestion, governments around
the world are exploring ways to “nudge” urban resi-
dents to commute using public transport instead of pri-
vate automobiles. Several cities have set up public bicycle-
sharing systems to facilitate short trips within the city.
A bicycle-sharing system (BSS) is “a self-service short
term, one-way-capable, bike rental offer in public spaces,
with network characteristics” (OBIS Project 2011, p. 10).
A standard BSS consists of a network of bicycle sta-
tions where bicycles are docked and available for pick
up. Licensed operators often use low price or even free
access to bicycles (for limited time) to entice com-
muters to adopt this transport mode. As of April 2013,
there were around 535 bicycle-sharing programs around
the world, with an estimated fleet of 517,000 bicycles
(http://en.wikipedia.org/wiki/Bicycle_sharing_system).

The advantages of using bicycle sharing include
increased transit use, decreased personal vehicle trips,

lower greenhouse gas emission, and improved public
health. DeMaio (2009, p. 52) concluded that “as the price
of fuel rises, traffic congestion worsens, populations grow,
and a greater worldwide consciousness arises around cli-
mate change, it will be necessary for leaders around the
world to find new modes of transport and better adapt exist-
ing modes to move people in more environmentally sound,
efficient, and economically feasible ways. Bicycle sharing
is evolving rapidly to fit the needs of the 21st century.”

Several cities in China have already started public bicy-
cle projects, with Hangzhou now running arguably the
world’s largest bicycle-sharing program, with 50,000 bicy-
cles deployed across 2,000 stations. It has close to 1.2 mil-
lion registered users. This dwarfs the more famous VELIB
program in France, which has around 20,000 bicycles
deployed across 1,451 stations. In Kaohsiung, Taiwan, the
first BSS, called C-Bike, was initiated in late February
2009. It originally had 20 bicycle stations, all located near
train stations, with 1,500 bicycles deployed. By May 2009,
it had 30 more bicycle stations in scenic areas, business

1346

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
0.

11
6.

53
.1

14
] 

on
 1

9 
Fe

br
ua

ry
 2

01
4,

 a
t 1

8:
41

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Shu et al.: Models for Bicycle-Sharing Systems
Operations Research 61(6), pp. 1346–1359, © 2013 INFORMS 1347

districts, government buildings, schools, etc., with a total
of 4,500 bicycles in operation. Most stations are automatic,
unmanned, self-help, and open 24 hours a day. One can
check out or return a bicycle, using a credit card, in sec-
onds. The proximity of bicycle stations has boosted use
of C-Bikes. Total riding time for C-Bikes increased from
5,433 hours in April 2009 to 30,000 hours in December
2009. By the end of 2009, C-Bike had purportedly helped
to reduce more than 200 tons of carbon-dioxide emissions
in the city.

Although the BSS is very attractive as an alternative form
of transportation, major challenges confront the operators
and few scientific tools are available to support BSS design
and effective management to enhance its economic viabil-
ity. It is difficult for a BSS operator to turn a profit based on
revenues collected on bicycle rides. In fact, to the best of
our knowledge, none of the existing BSSs in operation has
turned a profit. Most BSSs currently rely on government
subsidies or private donations to sustain their operations.

One way to address the financial concern is through
business-model innovation. In recent years, new BSS ven-
dors have emerged with proprietary systems that they then
sold to other BSS operators around the world. This allows
system interoperability, and users can gain access to BSSs
in multiple regions. Also, start-ups like CityRide are con-
verting bike rides into carbon offset that can be sold on
the carbon market. This evolution in business and pricing
strategies has allowed BSSs to seek out business models
that may be profitable, and thus ensure that new BSSs will
continue to be set up around the world, regardless of their
goals or scale. In this paper, we focus primarily on develop-
ing operations research (OR) tools to enhance the economic
viability of the BSS by optimizing bicycle deployment and
redistribution operations.

1.1. Related Literature

Although the first BSS was founded in Amsterdam on
July 28, 1965, and the third generation of BSSs is now
widely used around the globe, study of the design and man-
agement of BSSs is limited and only began recently; a few
papers have focused on the history and real-life applica-
tion of BSSs. We refer interested readers to DeMaio (2003,
2009), DeMaio and Gifford (2004), Lathia et al. (2012),
and the references therein. We focus here mainly on review-
ing models for bicycle-sharing-system design and bicycle
redistribution.

Lin and Yang (2011) and Lin et al. (2013) study the
design of public bicycle networks using the notion of ser-
vice level constraints that are well grounded in the area of
logistics and inventory management. Unfortunately, these
studies fail to take into account the fact that whereas the
flow of materials within a traditional logistics network is
largely dictated and optimized by supply chain planners,
the flow of material within a public bicycle system is dic-
tated by the random travel patterns of passengers. Raviv
and Kolka (2013) propose an inventory model to study

the management of bicycle stations in BSSs. Their study
is based on a single station, which can inform decision
making on docking capacity and bicycle redistribution (see
also Raviv et al. 2012). Nair and Miller-Hooks (2011)
develop a stochastic joint chance constraint model to study
vehicle redistribution in vehicle-sharing systems. Schui-
jbroek et al. (2013) further develop a model to construct
vehicle routes for bicycle redistribution.

1.2. Research Issues and Structure of the Paper

Given the success of such programs in the United States,
where the biking population is not even 1%, the number
of people already using bicycles is not considered essen-
tial. Coverage and density of bicycle stations are, in con-
trast, critical: stations should be separated by not more
than 500 m, and ideally not more than 300 m. However,
excessive focus on coverage and density, without adequate
understanding of the dynamics of flow within the network,
can be detrimental.

A comparison of the statistics for various bicycle-sharing
programs1 across the world (Table 1) shows an interest-
ing (and possibly worrisome) trend: the rentals per bike
day of the systems deployed in various cities in China are
lower than their counterparts in Europe and Canada, despite
having more stations and bicycles deployed. Although the
lower number of rentals per bike day does not necessarily
imply a lower utilization rate in terms of bike occupancy
since one bike rental may involve a longer bike trip dis-
tance (or time) than another, this table does bring out an
important issue—utilization of the bicycles—to BSS opera-
tors since it affects their financial viability because revenues
from BSS are derived mainly from the utilization of the
bicycles and membership fees. In this paper, we develop
models that help predict the utilization rate of the bicycles.

The central focus of this paper is to understand how
deployment and redistribution of bicycles in the network
affect the utilization rate of the bicycles, and to what extent
they affect the service level experienced by users. Although
we restrict our discussion to bicycle-sharing systems, the
ideas and techniques developed will be useful for the anal-
ysis of any system (e.g., car sharing) in which a fleet of
vehicles is made available by a provider at the point of
origin who cannot control trip destinations, as these are
controlled by customers who arrive randomly during the
planning horizon.

More specifically, we address the following pertinent
issues in the management of a bicycle-sharing network:

• Given station locations, what is the appropriate num-
ber of bicycles to deploy in the network? The availability
of bicycles affects the number of bicycle trips made and, in
turn, the bicycle utilization rate. The former measures how
much of the existing demand can be captured, whereas the
latter affects the system’s viability. Given the time-varying
demand pattern, we need an optimal number of bicycles,
appropriately located at the beginning of the day, to make
effective use of the resources available to meet demand.
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Table 1. Statistics for bicycle-sharing systems.

System VELIB BICING BIXI Beijing Hangzhou Nanchang Wuhan
operator JCDecaux ClearChannel Staonnement Fortune Bicycle Xinfeida Xinfeida

Adshel de Montréal Service
City Paris Barcelona Montréal Beijing Hangzhou Nanchang Wuhan
Start date Jul-07 Mar-07 Spring 2009 Aug-05 May-08 Aug-09 Nov-08
Bicycles 20,600 6,000 5,000 10,000 50,000 1,000 20,000
Bike stations 1,451 400 400 1,000 2,000 30 718
Rentals/bike-day 12.5 16 15 2.32 8 4 5

• Impact of redistribution: Bicycle flow is dictated by
customers’ travel patterns. Some stations are departure
dominant and others arrival dominant. For example, during
peak morning hours, customer flows are almost always one
directional (e.g., from home or interchange to office). This
leads to bicycle stations that are full and others that are
completely void of bicycles. It is thus necessary to con-
stantly redistribute bicycles across the stations in the system
to ensure that users will be able to find a dock where they
can check out or return a bicycle. Our results show, inter-
estingly, that the effectiveness of the redistribution strategy
(measured by the number of additional trips supported) is
in fact intricately tied to demand usage patterns and the
number of bicycles deployed in the system.

• Number of bicycle docks: To make the bicycle-sharing
program implementable, we need to consider how many
bicycle docks to install at each station so that customers
can return their bicycles on arrival at the destination sta-
tion. Clearly, the number of docks needed at each station
depends on utilization of the bicycles and how customer
flows are supported in the system, and whether periodic
redistribution is used to match supply with demand. In
fact, our results show that redistribution has the potential
to reduce the number of docks needed at each station.

We propose in this paper a simple proportional network
flow model to help address the above issues. This model
was first studied by Sahni (1974) as a generalization of the
traditional network flow model. Ahuja et al. (1999) used
this to study a class of water resource management prob-
lems in Sardinia, Italy. The equal flow condition is critical,
because the amount of potable water transported must be
the same in each time period in the network. Similarly, this
constraint arises naturally in processor-sharing networks;
see Koene (1982) and Chinneck (1995) for applications in
other environmental and energy systems.

We develop the theory and explain the reasoning for our
model in the next section. To validate our findings, in §3,
we use a set of customer data from a Singapore mass rapid
transit system to develop the demand model for our BSS.
By focusing on this segment of the market for short trips,
and through comparison with extensive simulation results,
we demonstrate that the proposed model can be used to
approximate to a reasonable level of accuracy the flow of
bicycles in the system. More importantly, we demonstrate
that the model can be used to address several pertinent

managerial issues in BSS management. In §4, we discuss
various extensions and generalizations to this basic network
flow model, and conclude the paper in §5.

2. The Stochastic Network Flow Model
We assume that there is an initial allotment of bicycles at
each train station. For each time period, passengers arrive
randomly at the station to use the bicycles to travel to their
destinations. The goal is to analyze and estimate the num-
ber of such trips that can be supported and substituted by
the public bicycle-sharing system, based on the initial allot-
ment of bicycles and the passenger arrival process. This is
a technically challenging problem.

Formally, let S denote the set of stations in the network.
In each time period t, the number of passengers who arrive
planning to travel from station i to station j follows a Pois-
son process, with rate rij4t5. The total number of passengers
arriving to use bicycles at station i is thus given by a Pois-
son process with rate

∑

j 6=i rij4t5. Within each time period,
let Dij4t5 and Di4t5 denote the number of arrivals traveling
on each link and into each station, respectively. We assume
that all rides can be completed within a single time period.

Note that bicycles are allocated to passengers on a first-
come-first-serve basis, so that whenever the initial stock of
bicycles at a station is depleted, the latecomers will not
be able to ride to their destinations using bicycles, and
such demands are considered lost. Figure 1 shows the time-
expanded view of the entire network, where the flow on
each arc depends on the realization of the number of pas-
sengers traveling from origin to destination across a time
period, and the number of bicycles available at the station.

Remark. Note that in Figure 1 we assume that customers
arrive at the stations and can complete their trips in one
time period using bicycles. When customers are not able to
reach their destination station using bicycles within a sin-
gle time period, we only need to slightly modify the time-
expanded network to allow arcs to extend across multiple
time periods. The same linear programming (LP) based
approach can be used to model the flow of customers in
the network. In the most general case, of course we need to
use a queueing network based approach2 to model the flow
of bicycles in this system. However, the associated opti-
mization problem becomes intractable using this approach,
because of the time-varying nature of the travel patterns.
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Figure 1. Bicycle-flow network: Time-expanded graph.
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To gain better insight into this problem, we consider
an initial allotment of bicycles xi4t5 at station i in time
period t. The number of bicycle trips that will materialize
in time period t will be min4xi4t51Di4t55. However, the
number of bicycles flowing from i to j will depend on the
order of passenger arrivals at station i, and is more compli-
cated to track. For 0 <p< 1, let Di4t56p7 denote the num-
ber of tagged passengers where each passenger is tagged
with probability p on arrival. More formally, let 8�i4p59
denote a sequence of independent Bernoulli r.v.s with mean
p, then

Di4t56p7=
Di4t5
∑

k=1

�k4p50

By the well-known Poisson thinning Lemma, Di4t56p7 is
Poisson with rate p × 4

∑

j 6=i rij4t55. Let pij4t5 ≡

rij4t5/
∑

k2 k 6=i rik4t5. Hence

Dij4t5∼Di4t56pij4t570

By a slight abuse of notation, for some number of bicycles
xi4t5, let

min4xi4t51Di4t556p7=
min4xi4t51Di4t55

∑

k=1

�k4p50

If there are xi4t5 bicycles at station i, the number of bicy-
cles leaving station i at time t is clearly min4xi4t51Di4t55.
The number of bicycles traveling from i to j , however,
depends on the order of arrival of customers traveling to
different destinations. In particular, the number of passen-
gers traveling to j follows the distribution of

min4Di4t51 xi4t556pij4t570

The number of bicycles at station i at the end of the time
period is given by

xi4t + 15= xi4t5− min4Di4t51 xi4t55
︸ ︷︷ ︸

total departures

+
∑

j2 j 6=i

4min4Dj4t51 xj4t556pji4t575

︸ ︷︷ ︸

total arrivals

= xi4t5−
∑

j2 j 6=i

4min4Di4t51 xi4t556pij4t575

+
∑

j2 j 6=i

4min4Dj4t51 xj4t556pji4t5750 (1)

The expected number of trips traversed using bicycles is
given by
N
∑

t=0

∑

i∈S

∑

j2 j 6=i

E4min4Di4t51 xi4t556pij4t5750
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Let yi4t5=E4xi4t55, and











yij4t5=E4min4Di4t51 xi4t556pij4t5751

yii4t5= yi4t5−
∑

j2 j 6=i

yij4t50

By the above definition, yij4t5 stands for the expected num-
ber of bicycles traveling from station i to station j dur-
ing time period t. We next describe some simple structural
properties of yij4t5.

Lemma 1. yij4t5/yil4t5= rij4t5/ril4t5.

Proof. We have

yij4t5=E4min4Di4t51 xi4t556pij4t575

=E

(min4xi4t51Di4t55
∑

k=1

�k4pij4t55

)

0

Similarly,

yil4t5=E4min4Di4t51 xi4t556pil4t575

=E

(min4xi4t51Di4t55
∑

k=1

�k4pil4t55

)

0

Conditional on min4xi4t51Di4t55, and using the fact that

E4�k4pij4t555= pij4t51 and E4�k4pil4t555= pil4t51

we have

yij4t5/yil4t5= rij4t5/ril4t50 �

Note that

Lemma 2. yij4t5¶ rij4t5.

Proof. This follows from

yij4t5=E4min4Di4t51 xi4t556pij4t575¶E4Di4t56pij4t575

= rij4t50 �

Lemma 3. yi4t + 15= yi4t5−
∑

j2 j 6=i yij4t5+
∑

j2 j 6=i yji4t5.

Proof. This follows from the flow conservation constraints
in (1), i.e., for station i, the expected number of bicy-
cles available at the beginning of period t + 1 equals the
expected number of bicycles at the beginning of period t,
plus the net flow of bicycles into the station during
period t. �

Let Z∗ denote the optimal objective value to the follow-
ing linear programming problem:

Z∗
= max

( N
∑

t=0

∑

i∈S

∑

j2 j 6=i

yij4t5

)

subject to yi4t + 15= yi4t5−
∑

j2 j 6=i

yij4t5

+
∑

j2 j 6=i

yji4t51 ∀ i1 t3

yi4t5= yii4t5+
∑

j2 j 6=i

yij4t51 ∀ i1 t3

yij4t5

yil4t5
=

rij4t5

ril4t5
1 ∀ i1 j1 l1 t3

yi405= xi4051 ∀ i3

0 ¶ yij4t5¶ rij4t51 ∀ t1 i 6= j0

The variables yii4t5 denote the bicycles remaining in sta-
tion i throughout time period t. The first constraint demon-
strates that the number of bicycles available at the begin-
ning of period t + 1 equals the number of bicycles that
remain at station i and the number of bicycles that arrive
at station i during period t. Given an initial allotment of
bicycles at station i, denoted by xi405, the mean number of
bicycle trips supported in the BSS on each link is a feasible
solution to the above LP. Hence, we have the following:

Theorem 1. Z∗ denotes an upper bound to the expected
number of bicycle trips in the system when the initial allot-
ment of bicycles to station i is given by xi405.

The above LP is surprisingly effective in providing a
simple estimate of the performance (based on the number
of bicycle trips the system can support) of the BSS with
an initial bicycle inventory position xi405. We will use this
model extensively in the next section to examine bicycle
utilization and the value of bicycle redistribution, using real
transit data.

Example. To see that the above LP is not exact, consider
a three-station example in which there are two bicycles at
station 3 initially, and none at the other two stations. Sup-
pose r31405 = r32405 = 1, r234t5 = r324t5 = 1 for all t > 1,
and rij4t5 = 0 otherwise. If a bicycle flows from station 3
to station 1 in period t = 0, then it is stuck there throughout
the rest of the day. In this case, to support the maximum
flow in the network, the optimal LP solution suppresses the
flow of bicycles from station 3 to stations 1 and 2 in the
first period, maintaining the proportionality constraint, so
that two bicycles will remain in station 3 from period 1
onward to serve the flow between station 2 and station 3.
This LP solution dominates the expected number of trips
in the stochastic network flow model.

Limitation. The previous example highlights a weakness
in the LP approach: In real deployment, trips will be taken
by riders and bicycles will not be held. The LP solu-
tion will only hold back bicycles in time period t if rij4t5
changes abruptly over the different time periods. In reality,
we expect the change in rij4t5 to be gradual. Nonetheless,
this also suggests a way to improve the accuracy of the
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LP model to predict the expected flow in the system: by
explicitly modeling the constraint that

xi4t5− min4Di4t51 xi4t55
︸ ︷︷ ︸

total departures

> 0

if and only if all passengers arriving in time t to station i
can find a bicycle. Thus
(

xi4t5−
∑

j2 j 6=i

4min4Di4t51 xi4t556pij4t575

)

· 4Dik4t5− 4min4Di4t51 xi4t556pik4t5755= 0

for every origin-destination pair i, k in all realizations
of the stochastic system. This constraint could be han-
dled by lifting the LP to a higher dimensional conic pro-
gram to account for the quadratic terms in the constraint
(cf. the approach using copositive cone in Natarajan et al.
2011). Note that this is not equivalent to forcing yii4t5
to zero unless yik4t5 = rik4t5, since the constraint holds
on all sample paths but may not hold for the product of
E6xi4t5 −

∑

j2 j 6=i min4Di4t51 xi4t556pij4t577 and E6Dik4t5 −

min4Di4t51 xi4t556pik4t577. Indeed, our formulation allows
for yik4t5 < rik4t5 and yet yii4t5 > 0.

2.1. Equilibrium State in Time-Invariant System

In the rest of this section, we further analyze the properties
of this formulation (simple network flow with proportion-
ality constraints) to gain insight on the problem.

Suppose the Poisson arrival in each time period is sta-
tionary with rate rij . Is there a way to characterize the
number of bicycles in the equilibrium state of the bicycle-
sharing network? We modify the LP to provide a glimpse
of the answer to this problem.

In the equilibrium state, we expect yi4t + 15 = yi4t5 as
t → �. Let

yij = lim
t→�

yij4t50

The total number of bicycles in the system is denoted by
N . Let y∗

ij denote the optimal solution to the following LP:

Z∗4�5= max
∑

i1 j∈S2 j 6=i

yij

subject to
∑

j2 j 6=i

yij =
∑

j2 j 6=i

yji1 ∀ i3

yij

yil
=

rij

ril
1 ∀ i1 j1 l3

0 ¶ yij ¶ rij1 ∀ i1 j3

∑

i

(

yii +
∑

j2 j 6=i

yij

)

=N0

It can be seen easily that there exists i∗ such that y∗
i∗j = ri∗j

for all j 6= i∗; otherwise, we could scale the solution to
improve the objective value. We call such nodes the sink

stations. Furthermore, if there exists i such that y∗
ii > 0 but

y∗
ij < rij for all j 6= i, then we could modify the solution by

shifting y∗
ii to the station i∗, without affecting the feasibility

and quality of the solution, i.e.,

y∗

ii ← 01 y∗

i∗i∗ ← y∗

i∗i∗ + y∗

ii0

We call such nodes in which y∗
ij < rij the transient stations.

Note that WLOG, we can assume that y∗
ii = 0 when i is

transient.
Let z∗

i =
∑

j2 j 6=i y
∗
ij . By the proportionality constraints,

it is easy to see that

y∗

ij =
rij

∑

k2 k 6=i rik
z∗

i 0

Note that z∗
i is a solution to the following system of linear

equations:

zi =
∑

j2 j 6=i

(

rji
∑

k2 k 6=j rjk

)

zj1 i = 11 0 0 0 1 n0 (2)

If the transition probability matrix constructed using
rji/4

∑

k2 k 6=j rjk5 is irreducible, then the above system of
equations has a solution scaled to a constant. Note that z∗

i ¶
∑

k2 k 6=i rik, since y∗
ij ¶ rij and

∑

i z
∗
i ¶ N . Since our objec-

tive is to maximize
∑

i z
∗
i , the solution to the linear system

(2) is scaled in such a way that either (i) ∃S such that
z∗
i =

∑

k2 k 6=i rik for all i ∈ S, and z∗
i <

∑

k2 k 6=i rik otherwise,
or (ii)

∑

i z
∗
i = N and z∗

i <
∑

k2 k 6=i rik for all i. S corre-
sponds to the set of sink nodes in the system. In case (i),
the surplus N −

∑

i z
∗
i can be distributed to any of the y∗

ii

variables for i ∈ S without affecting the optimality of the
solution.

Theorem 2. The linear program Z∗4�5 may have multi-
ple optimal solutions, but the flow solution y∗

ij , i 6= j , is
uniquely determined by the rates rij if the transition prob-
ability matrix is irreducible. The “surplus” denoted by y∗

ii

for the sink nodes are, however, nondetermined and can be
distributed across different sink nodes.

Since the surplus y∗
ii have zero weights in the objective

function, having a large surplus does not improve the qual-
ity of the solution. This result indicates that given the rates
rij ’s, there is a limit N ∗ such that any number of bicycles
beyond this limit N ∗ will not improve the performance of
the system.

Example. In Figure 2, we have three stations that are con-
nected to each other. The number beside each direct arc
(i1 j) stands for the stationary arrival rate rij . Station 1 has
a net outflow of three passengers per unit time, whereas
stations 2 and 3 have net inflow of two and one passenger,
respectively. We expect the average number of bicycles at
station 1 to drain down to zero quickly, with the bulk of
bicycles building up at stations 2 and 3. However, note that
once the bicycles at station 1 drain down to zero, stations 2
and 3 immediately receive less inflow, and station 3 will
now have a net outflow of two bicycles per unit time.

We use the outputs from the simulation model to plot
the time-average level of bicycles (y∗

ii) at each station over
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Figure 2. Numerical example with three stations.
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2,000 periods and summarize the computational results in
Table 2. In particular, the gap is calculated as 100% ×

(output of the deterministic model − output of the simula-
tion model (average of 2,000 simulations))/output of the
simulation model. We observe that the time-average num-
ber of bicycles at each station stabilizes after 10 time peri-
ods, and the LP model yields highly accurate predictions of
the time-average level of bicycles in the stochastic system.

3. Bicycle-Sharing Demand from
Short Train Rides

We test the performance of the proposed bicycle deploy-
ment model using a set of public transport data provided
by the Singapore Land Transport Authority (LTA). We were
given access to one week’s worth of public transit data from
Monday to Friday (April 2011), including data on 17 mil-
lion transactional bus rides and 30 million mass rapid transit
(MRT) transactions. For the computation study, we focus on
train-ride data for the Singapore MRT System (SMRT).

Launched in 1987, the SMRT has grown from only
one line section with five stations to a network of four
lines (east–west, north–south, north–east, and the newly
launched Circle Line), with 102 stations and 148.9 km of
track. It operates from 5:00 a.m. to 01:00 a.m. each day,
with peak morning traffic from 7:30 a.m. to 9:30 a.m. and
peak evening traffic from 5:30 p.m. to 7:30 p.m. The longest
trip in our data set can take up to 33 stops, but the aver-
age number of stops traversed is only around 7.7. Note that
except for a handful of stations, commute time between
neighboring stations is roughly two to three minutes. About
16% of the trips are short, i.e., passengers leave the train
system within two stops of their starting station.

The statistics thus show that a significant proportion
of train passengers commute for, at most, six minutes
daily. Given that BSSs appeal mainly to short-distance
commuters, short SMRT rides form a latent demand seg-
ment for the bicycle-sharing system. We use this set of
train ridership data to construct the demand profile for the

Figure 3. Routing from station Chinese Garden (1) to
Bukit Batok (2) via Jurong East interchange
(3) in Singapore.

bicycle-sharing model proposed here. For instance, Fig-
ure 3 shows a scenario in which all trips from station 1 to
station 2 must pass through the interchange (station 3), even
though the two stations are only three kilometers apart.
Note that station 1 and station 2 are within two stops of
each other, with a transfer at the interchange. This is the
scenario in which a BSS with docks at stations 1 and 2 will
have the most appeal. For ease of exposition, we assume
that all rides between the two stations in our data set will be
transferred to the bicycle-sharing system, forming the time-
varying demand rate for our BSS. Note that in practice, the
substitution rate will be much lower; informal small-scale
surveys indicate that the substitution rate could be as low
as 3%, depending on time of day and weather conditions.

Our study will focus on origin-destination demands
within two stops with or without transfer at an interchange
in the transit network. An alternate public transport sys-
tem, such as a public BSS located at MRT stations, is an
attractive alternate for such commuters, especially during
morning and evening peak hours. The challenge, however,
is to determine the right level of bicycles to deploy at each
station and how utilization rates are affected by demand
patterns.

Next, we compare the proposed proportional network
flow model with a simulation model to identify the opera-
tional characteristics of the BSS.

3.1. Bicycle Deployment and Utilization

We split the horizon into 15-minute intervals, starting from
05:00 a.m., to collect customer data on those alighting
within two stations. There are 80 time intervals for each
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Table 2. Computational results of the numerical example with three stations.

Simulation

t = 0 t = 10 t = 50 Deterministic Gap %

Avg no. of bicycles at station 1 5 10656900000 10656600000 1065666651648 00004015241
Avg no. of bicycles at station 2 2 50506100000 50506000000 5050643297152 00007863631
Avg no. of bicycles at station 3 3 20837000000 20837400000 2083690051200 −00017603722

day and 560 time intervals for each week. We use a directed
time-expanded network to model each MRT station at each
time interval on each day. Let A denote the arc set in the
time-expanded network. There are two types of arcs in A.
The first is the one that links station i in time t to station j
in time t+1, for all t in which station j is within two stops
from station i. The other arcs are inventory arcs that join
the same station across two consecutive time periods. Note
that in cases in which certain trips between i and j can
last more than 15 minutes (e.g., 15–30 minutes), we could
simply modify our model by replacing the arc from i in
time t to j in time t + 1, with a new arc from i in t to j
in t+ 2, to model events in which trips last more than one
time period.

We also adopt the following notations:
• We define the system bicycle utilization rate �4t5 for

each time period t as follows:

�4t5≡

∑

i1 j2 i 6=j yij4t5
∑

i xi405
1

where
∑

i xi405 represents the total number of bicycles posi-
tioned at all stations at the beginning of the planning hori-
zon. Hence, �4t5 is the proportion of bicycles in use at
time t. Since the number of bicycles in the system is a
constant,

�=
∑

t

�4t5

measures the total number of rides in the system divided
by the total number of bicycles available, i.e., the (average)
number of times each bicycle is being used.

Note that � determines the economic viability of the
BSS: Each bicycle needs to be used more than a threshold
value within a stipulated number of years to justify initial
investment in the bicycle. In terms of revenues, however,
we need to deploy a large number of bicycles to support a
larger number of trips—yet this will decrease the average
bicycle utilization rate �. Hence, we need to delicately bal-
ance the revenues generated (measured by the number of
trips) with the utilization rate of the bicycles in the system.

With the above-defined notations, we can modify the LP
developed in the earlier section to account for the (desired)
utilization rate of the bicycles:

Z∗4�5= max
xi4051 yij 4t5

( N
∑

t=0

∑

i∈S

∑

j2 j 6=i

yij4t5

)

subject to yi4t + 15= yi4t5−
∑

j2 j 6=i

yij4t5

+
∑

j2 j 6=i

yji4t51 ∀ i1 t3 (3)

N
∑

t=0

∑

i∈S

∑

j2 j 6=i

yij4t5¾ �
∑

i

xi4053 (4)

yi4t5= yii4t5+
∑

j2 j 6=i

yij4t51 ∀ i1 t3 (5)

yij4t5

yil4t5
=

rij4t5

ril4t5
1 ∀ i1 j1 l1 t3 (6)

yi405= xi4051 ∀ i3 (7)

0 ¶ yij4t5¶ rij4t51 ∀ t1 i 6= j0 (8)

Note that constraint (4) requires the weekly bicycle uti-
lization rate to be at least �. The above LP determines
the total number of bicycles and their deployment at the
beginning (i.e., xi405) of the planning horizon, to attain the
desired utilization rate of � for the system. We solve the
above model using the CPLEX LP solver to obtain the maxi-
mum number of substituted trips using bicycles, the number
of bicycles to be optimally positioned at each station ini-
tially, and bicycle utilization rate �4t5 at each time period.

We also compare the solutions obtained from the deter-
ministic model with a simulation model. The detailed steps
in implementing the simulation are given as follows.

• We fix �, solve the deterministic model outlined in
the previous section, and obtain the optimal xi405 to be
deployed at each station i at the beginning of the planning
horizon.

• We use xi405 as the input to run the simulation model
for a stochastic network flow system with Poisson demand
at each arc in the network. We run the simulation 100 times
for each � to obtain the sample average of the system
performance.

• In each simulation, we use the direct time-expanded
network and assume the number of customers arriving at
each station during each 15 minutes time interval follows
a Poisson process. In particular, the mean of the interar-
rival time for customers arriving at station i with destina-
tion station j at time index t equals to 15/rij4t5. We then
sort the customers at each node according to their arrival
time at node i and discard those arrivals after 15 minutes.
The bicycles at station i are used by the customers on a
first-come-first-serve basis. We run this simulation for one
week to obtain the number of bicycle trips supported and
the bicycle utilization rate.
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Figure 4. Short-trip substitution boxplot.
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Figure 4 shows the performance of the bicycle-sharing
network when we assume that all short trips (within
two stops) in the train system are moved to the BSS. In the
figure, the x-axis corresponds to the average daily utiliza-
tion rate (denoted by �, where �= �/7). The y-axis on the
left shows the number of trips using bicycles, and the y-axis
on the right shows the number of bicycles deployed in the
system. The box plots (obtained via simulation) show that
variations in the number of bicycle trips increase when the
daily utilization rate decreases. More importantly, numer-
ical results show that the deterministic LP model yields
good approximation to the average number of bicycle trips
supported in the stochastic network flow model.

The relationship between the number of bicycle trips
supported by the system and the daily utilization rate
appears to be almost linear when the daily utilization rate
� is below 40: The number of bicycle trips decreases lin-
early as the targeted utilization rate of the system in this
region increases. However, the number of bicycles in opti-
mal deployment decreases drastically as the targeted daily
utilization rate increases, when � is below 40.

These trade-offs have important implications. First, it
appears that for this test case, an appropriate targeted uti-
lization rate to operate successfully is �= 30 − 40. At any
rate below this level, we will need to deploy significantly
more bicycles to support a small increase in the number
of bicycle trips. In this range, however, the service level
will not be high, as a significant portion of demand for
rides cannot be supported. The average total demand within
the system is around 308,000 trips, but when the system
is operating at � = 40, it can only support, on average,
182,035 trips (roughly 59% of demand).

Figure 5 shows the expected number of bicycles in one
of the train stations (Jurong East, an interchange station in
the MRT network) over the course of one day (80 time
intervals on the x-axis). Commutes into the station are nor-
mally for short distances from neighboring train stations,
to board trains going into city areas. Hence, there is a net
flow of bicycles into the station during morning peak hours.
Stock is only depleted during evening peak hours, when
customers return to ride bicycles back to their residential

Figure 5. Expected number of bicycles in Jurong East
Station, at different times in the day.
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areas. The break in the curve (for �= 40 or 70) shows time
zones where no bicycle is expected to be at the station, i.e.,
all bicycles going into that station are immediately utilized,
and hence the likelihood of unsatisfied demand for bicy-
cles is high in that instance. Most demands can be satisfied
when � is 10 (i.e., when a large number of bicycles are
deployed), but the station will be empty most of the time,
for � = 40 or 70 (when the number of bicycles deployed
is moderate or small). This shows the underlying difficulty
in making a fee-charging BSS financially viable: A satis-
factory service level can only be attained at low utilization
rates, because of customers’ travel timings and usage.

The stocking level in each station also fluctuates over
time. Figure 6 shows the fluctuation of expected number of
bicycles in three adjacent stations for � = 10 (large num-
ber of bicycles deployed) and � = 70 (small number of
bicycles deployed), as obtained from the LP model. Ang
Mo Kio station is at the middle and is about two km away
from the Yio Chu Kang and Bishan stations, respectively.
The figure shows that bicycle inventory in Yio Chu Kang
had gone up by late morning in both scenarios, even though
the initial number of bicycles at the beginning of the day
was small in both cases. There is thus a high net inflow
into this station, for the given initial deployment of bicy-
cles. On the other hand, the Ang Mo Kio station had a
large number of bicycles at the beginning in the high �
case, but got depleted quickly over the day. In the low �
case, the inventory remained low until the end of the day,
when inventory started to increase. Both scenarios point out
clearly that there is a need to move some bicycles from
Yio Chu Kang to Ang Mo Kio during the morning periods,
perhaps followed by some movement of bicycles from the
Ang Mo Kio to the Bishan station later in the day. This can
be achieved by redistributing the bicycles using dedicated
trucks, or by introducing incentive schemes to encourage
more bicycle travel along these routes at appropriate times.

The estimated number of bicycles obtained from the LP
model can be a valuable aid for operators to pinpoint these
critical routes for further enhancement of BSS operations.
In the next section, we will exploit this observation to
examine the impact of redistribution on the performance of
the system.
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Figure 6. Expected number of bicycles in three adja-
cent stations, at different times in the day.
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3.2. Number of Bicycle Docks Needed

Technically, we need to set up enough bicycle docks at each
station so that customers will be able to return the bicy-
cles when they reach their destinations. We calculate the
number of docks needed for each station as the maximum
bicycle quantity at each station across all time periods. Fig-
ures 7–9 compare the maximum bicycle quantity at each
station during all time periods for � = 10, 40, and 70 for
the network flow and the simulation model.

Interestingly, data extracted from the network flow model
are reasonably close to the actual peak inventory level at
each station, as obtained from the simulation model. Fur-
thermore, the number of docks needed to support storage
of peak inventory decreases with increased utilization (i.e.,
fewer bicycles deployed).3

Figure 7. Number of docks: Deterministic model vs. simulation model (� = 10).
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Computational results also show, interestingly, that with
a smaller number of bicycles deployed (�= 70), the system
should deploy more bicycles near to and at stations in the
central business district (stations 30–50 in the chart), lead-
ing to a relatively higher number of docks at these stations.
With more bicycles available (�= 40 or �= 10), however,
deployment of additional bicycles should be toward other
congested areas, such as stations near the interchange in
the east (stations 1–20), leading to a surge in the number
of docks there.

This computational result suggests that as more bicycles
are optimally deployed in the system, imbalances build up
in different regions of the network and will require invest-
ment in docking capacity in different regions in the net-
work.

3.3. Effectiveness of Bicycle Redistribution

With a slight abuse of notation, we redefine the time-
expanded network to model customer flow for each day k.
Let Nk denote the time index in the network on day k.
We conduct the experiment as follows. We first solve the
deterministic model Z∗4�5 proposed earlier, based on the
one-week data, to obtain the number of bicycles deployed
(denoted by C�). We then use this as input to run the fol-
lowing program (Pk) for each day k:

Z∗

k4�5= max
xi4051 yij 4t5

(

∑

t∈Nk

∑

i∈S

∑

j2 j 6=i

yij4t5

)

subject to yi4t + 15= yi4t5−
∑

j2 j 6=i

yij4t5

+
∑

j2 j 6=i

yji4t51 ∀ i1 t3

∑

i

yi405=C�3

yi4t5= yii4t5+
∑

j2 j 6=i

yij4t51 ∀ i1 t3

yij4t5

yil4t5
=

rij4t5

ril4t5
1 ∀ i1 j1 l1 t3

0 ¶ yij4t5¶ rij4t51 ∀ i1 j1 t0
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Figure 8. Number of docks: Deterministic model vs. simulation model (� = 40).
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Figure 9. Number of docks: Deterministic model vs. simulation model (� = 70).
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The above LP computes the optimal way to locate the C�

bicycles in the system, given the travel patterns of the day.
Note that we solve an LP for each �. By implementing the
above model for each day, we implicitly assume that the
system performs redistribution at the end of each day.

This daily redistribution strategy affects performance of
the BSS. Figure 10 shows that this strategy prevents sur-
plus bicycles from building up at stations, and thus reduces
the need to build more docks at each station. For � = 40,
it reduces the peak docking stations needed from 800 to
around 700.4

Although a redistribution strategy can enhance system
performance in terms of the number of substituted trips
supported in the system and the number of docks needed
at each station, it is a time-consuming and expensive task.
The concern is, how often shall we perform the redistribu-
tion in the system? In the rest of this section, we run more
experiments to examine the value of periodic redistribution.
For ease of exposition, we assume that redistribution can
be accomplished within a single time period. More gener-
ally, we can modify the time-expanded network to allow
arcs to join multiple time periods if the time required for
redistribution is more than one period. Figure 11 shows the
trade-offs among the number of substituted trips supported,
the total number of bicycles, and the number of periodic
redistributions per day. In this set of experiments, we subdi-
vide the time horizon evenly into 80 smaller time intervals
per day, and perform periodic redistribution at equal time
intervals over one day. For certain cases, when 80 time

intervals is not divisible by the number of redistributions
per day, we keep the remainder in the last time interval
of the day. Figure 11 shows the end result: when the total
number of bicycles invested in the system is more than
30,000, frequent periodic redistribution does not add much
to the number of bicycle trips supported by the system. Fur-
thermore, a small number of daily redistributions (e.g., two
to four) suffices, since more frequent redistribution will not
add much to total supported bicycle trips.

4. Extensions and Discussions
The model developed in the previous section ignores two
pertinent issues in BSS design: the impact of limited docks
on flow in the system, and that the number of redistribu-
tion arcs per period is limited because of resources avail-
able (i.e., number of trucks used for redistribution). In this
section, we discuss how these features can be handled by
suitable reformulation of the model.

4.1. Resource-Constrained Redistribution Design

In reality, redistribution activities per time period are the
key cost driver of most BSS operations, constituting close
to 30% in most European cities. The number of redistribu-
tion routes per time period is usually constrained by Q, the
number of trucks available. Also, suppose the maximum
budget for bicycle investment in the system is C public
bicycles. To incorporate these, we need to modify our LP
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Figure 10. Number of docks: Deterministic model vs. simulation model with redistribution.
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to bring in new decision variables zij4t5 to model the redis-
tribution flows on arc (i1 j) in time t. Let cij denote the cost
of moving one bicycle from i to j , normalized to the rev-
enue generated per ride supported in the system. For ease
of exposition, we assume that redistribution can be com-
pleted within one time period; otherwise, we add the arc
across multiple time periods to denote the time needed for
redistribution. Our new model becomes

Z∗

Q = max
( N
∑

t=0

∑

i∈S

∑

j2 j 6=i

yij4t5

)

−

( N
∑

t=0

∑

i∈S

∑

j2 j 6=i

cijzij4t5

)

subject to yi4t + 15= yi4t5−
∑

j2 j 6=i

4yij4t5+ zij4t55

+
∑

j2 j 6=i

4yji4t5+ zji4t551 ∀ i1 t3

yi4t5= yii4t5+
∑

j2 j 6=i

4yij4t5+ zij4t551 ∀ i1 t3

yij4t5

yil4t5
=

rij4t5

ril4t5
1 ∀ i1 j1 l1 t3

yi405= xi4051 ∀ i3

0 ¶ yij4t5¶ rij4t51 ∀ t1 i 6= j3
∑

i

xi405=C3

zij4t5¾ 01 zi1 j4t5¶Mvi1 j4t51 ∀ t1 i 6= j3

∑

i1 j

vi1 j4t5¶
{

Q if t ∈T1

0 otherwise0

In this formulation, M is a large constant, and vi1 j4t5
denotes the indicator that the arc (i1 j) is used for redistri-
bution in time t. The last constraint models the fact that
redistribution is allowed on at most Q arcs, and in time
period t when t is an allowable time period for redistribu-
tion (denoted by T). We space out the redistribution periods
in T so that we do not have to model explicitly that the
redistribution arcs selected form a route for each truck.

Note that technically, the redistribution plan should be
dynamic and deployed based on real-time information
about the flow in the network. Hence, zij4t5 should be
dynamically determined. However, since the constraints

Figure 11. 3-D illustration of periodic redistribution.
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proposed above are satisfied in all sample paths, Z∗
Q pro-

vides an upper bound on the optimal dynamic redistri-
bution solution, and zij4t5’s obtained above are estimated
redistribution plans for future time periods. The above can
be solved and implemented in a rolling-horizon format to
update the plan for redistribution.

4.2. Modeling Dock Capacities

The availability of docks to receive returned bicycles
is an important consideration in most BSS operations.
We assumed an unlimited supply of docks in our formula-
tion to simplify the dynamics of the flow of bicycles in the
system. This assumption is reasonable for some BSSs such
as “Call a Bike” in Germany or DATE BIKE at Sendai,
Japan, where a bike does not need to be returned to a
fixed rack. Instead, it can be returned somewhere close to
a rental site, as long as the sensor can detect the returned
bike. In this case, customers do not have the problem of
finding an empty dock, and thus we may treat it as an
uncapacitated station. Another situation where the unca-
pacitated station assumption is reasonable is when human
agents are assigned to manage the bicycle stations; they can
store overflow bicycles in temporary shacks, and thus mit-
igate the need to have the right levels of docking capacity
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Figure 12. Mobile docking concept proposed by Isuda
Singapore.

in the stations. This may be a costly option though, thus
may not be feasible for some BSSs. A company in Sin-
gapore, Isuda, is attempting to address the docking issue
with its new mobile dock concept (Figure 12) in which
docks are on wheels and can be moved to other locations if
necessary. Using this approach, we could improve bicycle
utilization by periodically redistributing not only the bicy-
cles but also the docks. Furthermore, docking sites could
be easily relocated if necessary, therefore reducing the risk
of installing docks at the wrong locations. This gives rise to
an associated operational problem: how to manage mobile
bicycles and docks. Our results should be a useful build-
ing block for any dynamic control policy for redistributing
bicycles and docks within the network. Every redistribu-
tion plan has to balance the trade-off between taking docks
and bicycles out of circulation in the current period, i.e.,
temporary loss of capacity, with the long- term expected
gain of better positioning of bicycles and docking capac-
ity within the network. The LP approach developed in this
paper can be used to estimate the long-term expected gain
for the current time period, given the starting bicycle and
docking capacities at each station.

Another way to approach docking capacity is to intro-
duce this into the dynamics of the flow of bicycles in the
network. Suppose that each station i has a physical docking
capacity of Ki that cannot be changed. The flow arriving
at station i in time t cannot be more than Ki; otherwise,
we assume that the IT system in the BSS is able to inform
customers in advance and prevent an excessive inflow of
bicycles into the station. We use new variables yDij 4t5 to
denote the effective flow of bicycles after accounting for
the effect of docking capacities. An upper bound to the
number of trips supported in the network can be obtained
by solving

Z∗

D = max
( N
∑

t=0

∑

i∈S

∑

j2 j 6=i

yDij 4t5

)

subject to yi4t + 15= yi4t5−
∑

j2 j 6=i

yDij 4t5

+
∑

j2 j 6=i

yDji4t51 ∀ i1 t3

yi4t5= yDii 4t5+
∑

j2 j 6=i

yDij 4t51 ∀ i1 t3

yij4t5

yil4t5
=

rij4t5

ril4t5
1 ∀ i1 j1 l1 t3

yDij 4t5

yDkj4t5
=

yij4t5

ykj4t5
1 ∀ i1 j1 k1 t3

∑

i

yDij 4t5¶Kj1 ∀ j1 t3

yi405= xi4051 ∀ i3

0 ¶ yDij 4t5¶ yij4t5¶ rij4t51 ∀ t1 i 6= j0

The constraint

yij4t5

yil4t5
=

rij4t5

ril4t5

captures the proportionality condition for Poisson flow out
of station i into station j and l, whereas the constraint

yDij 4t5

yDkj4t5
=

yij4t5

ykj4t5

modifies the flow further by factoring in the docking capac-
ity at station j , and enforces the proportionality constraint
for Poisson flow into station j . Note that this gives rise to
a nonlinear program. The constraint

∑

i

yDij 4t5¶Kj

models the constraint that the docking capacity at j is fixed
at Kj .

5. Concluding Remarks
In this paper, we propose a novel bicycle-sharing model in
which customers use bicycles to substitute for their short-
distance trips. We use a deterministic LP model to approxi-
mate the system performance of the stochastic system, and
show that the deterministic model can imitate the actual
system performance very closely, based on actual Singa-
pore MRT ridership data. We conduct extensive numerical
experiments to examine important issues such as the bicy-
cle utilization rate, the value of bicycle redistribution, and
the number of bicycle docks that should be set up at each
station.

Our model can also be extended to incorporate the sce-
nario of using bicycles to transport customers between
MRT stations and neighborhoods, assuming that there is no
spillover of demand from one location to another. We have
implemented our model using a set of bus-transit data in a
new town in Singapore, and identified the ideal locations
to set up bicycle stations for the network. Our numerical
results suggest that the optimal location choices are robust
to input errors: for various demand scenarios, the same set
of locations are identified as optimal. Furthermore, adding
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proportionality significantly improves the estimation accu-
racy of the number of trips supported.

Another interesting direction for research will be to
explore the usage of incentive schemes to balance flow. Our
approach hinges crucially on the fact that system parame-
ters rij4t5 are given as input. When they are endogenous to
the model, i.e., when promotional activities can be used to
influence the flow rate between i and j , then the problem
is still unsolved. We leave these and other issues to future
research.

Endnotes

1. See http://transport-solutions.blogspot.com/2010/08/revolutionizing
-public-transport-with.html.
2. We thank Prof Gideon Weiss for pointing this out.
3. Note that we have assumed all customers will use bicycles to
substitute their short-distance MRT trips (within two-Stop), upon
the availability of the bicycles. We have thus actually obtained a
gross overestimate on the total volume of trips that can be sub-
stituted by bicycles. In reality, only a small percentage of the
short-distance commuters captured in the data will choose to use
bicycles, say 10%. Therefore, all our numbers must be scaled
down by a factor of 10 accordingly. In this case, we can see that
for � = 40, the maximum number of bicycle docks we need to
set up among all stations is no more than 80 for our system.
4. If we assume that the take-up rate for bicycle trips is only
10% of the full demand, then the corresponding number of docks
needed will be reduced by 90%, i.e., from 700 to 70 docks.

Acknowledgments

The authors thank the area editor, the associate editor, and three
anonymous referees for their valuable comments and sugges-
tions that helped improve this paper. The authors thank Singa-
pore Mass Rapid Transit and Land Transport Authority for pro-
viding the data used in this research. The authors also thank
Deanna Yeo and Meilin Zhang for their help in the initial
exploratory data analysis. This research was supported in part
by the National Natural Science Foundation of China [70801014,
71171047, 71222103], NUS Academic Research Fund [R-314-
000-078-112], and National Science Council of Taiwan [NSC100-
2410-H-006-006-MY2].

References
Ahuja R, Orlin J, Sechi G, Zuddas P (1999) Algorithms for the simple

equal flow problem. Management Sci. 45(10):1440–1455.
Chinneck JW (1995) Processing network models of energy/environment

systems. Comput. Indust. Engrg. 28(1):179–189.
DeMaio P (2003) Smart bicycles: Public transportation for the 21st cen-

tury. Transportation Quart. 57(1):9–11.
DeMaio P (2009) Bicycle-sharing: History, impacts, models of provision,

and future. J. Public Transportation 12(4):41–56.

DeMaio P, Gifford J (2004) Will smart bicycles succeed as public trans-
portation in the United States? J. Public Transportation 7(2):1–15.

Koene J (1982) Minimal cost OW in processing networks: A pri-
mal approach. Ph.D. thesis, Technische Universiteit Eindhoven,
Eindhoven, The Netherlands. http://alexandria.tue.nl/extra1/PRF4A/
8203150.pdf.

Lathia N, Ahmed S, Capra L (2012) Measuring the impact of opening the
London shared bicycle scheme to casual users. Transportation Res.
Part C 22:88–102.

Lin J-R, Yang T-H (2011) Strategic design of public bicycle sharing
systems with service level constraints. Transportation Res. Part E
47(2):284–294.

Lin J-R, Yang T-H, Chang Y-C (2013) A hub location inventory model
for bicycle sharing system design: Formulation and solution. Comput.
Indust. Engrg. 65(1):77–86.

Nair R, Miller-Hooks E (2011) Fleet management for vehicle sharing
operations. Transportation Sci. 45(4):524–540.

Natarajan K, Teo CP, Zheng Z (2011) Mixed 0-1 linear programs under
objective uncertainty: A completely positive representation. Oper.
Res. 59(3):713–728.

OBIS Project (2011) Optimising bike sharing in European cities—A
handbook. http://www.eltis.org/docs/tools/Obis_Handbook.pdf.

Raviv T, Kolka O (2013) Optimal inventory management of a bike-sharing
station. IIE Trans. 45(10):1077–1093.

Raviv T, Tzur M, Forma IA (2012) Static repositioning in a bike-sharing
system: Models and solution approaches. Working paper, Tel Aviv
University, Tel Aviv, Israel.

Sahni S (1974) Computationally related problems. SIAM J. Comput.
3:262–279.

Schuijbroek J, Hampshire R, van Hoeve W-J (2013) Inventory rebalancing
and vehicle routing in bike sharing systems. Working paper, Carnegie
Mellon University, Pittsburgh.

Jia Shu is a professor in the Department of Management Sci-
ence and Engineering, School of Economics and Management, at
Southeast University in Nanjing, China. His research focuses on
applications of integer programming in logistics, transportation,
and supply chain management.

Mabel C. Chou is an associate professor in the Department
of Decision Sciences, NUS Business School, National University
of Singapore. Her research interest is in the application of opti-
mization tools for management problems, including production
scheduling, logistics and supply chain analysis, healthcare man-
agement, and flexibility design and analysis.

Qizhang Liu is a senior lecturer in the Department of Deci-
sion Sciences, NUS Business School, National University of Sin-
gapore. His research focuses on discrete optimization and trans-
portation logistics.

Chung-Piaw Teo is a professor in the Department of Decision
Sciences, NUS Business School, National University of Singa-
pore. His research interests include discrete and distributionally
robust optimization and their applications in operations manage-
ment, logistics, transportation, economics, and gambling.

I-Lin Wang is an associate professor in the Department
of Industrial and Information Management at National Cheng
Kung University, Taiwan. His research interests focus on net-
work optimization with applications in logistics and transporta-
tion, bioinformatics, scheduling, sensor network localization, and
asset management.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

14
0.

11
6.

53
.1

14
] 

on
 1

9 
Fe

br
ua

ry
 2

01
4,

 a
t 1

8:
41

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 


